[0062] The computer system 50 also includes an input device 70 that is operatively coupled to the processor 56. The input device 70 is configured to transfer data from the outside world into the computer system 50. The input device 70 may for example be used to perform tracking and to make selections with respect to the GUI 69 on the display 68. The input device 70 may also be used to issue commands in the computer system 50. The input device 70 may include a touch sensing device configured to receive input from a user's touch and to send this information to the processor 56. By way of example, the touch-sensing device may correspond to a touchpad or a touch screen. In many cases, the touch-sensing device recognizes touches, as well as the position and magnitude of touches on a touch sensitive surface. The touch sensing means reports the touches to the processor 56 and the processor 56 interprets the touches in accordance with its programming. For example, the processor 56 may initiate a task in accordance with a particular touch. A dedicated processor can be used to process touches locally and reduce demand for the main processor of the computer system. The touch sensing device may be based on sensing technologies including but not limited to capacitive sensing, resistive sensing, surface acoustic wave sensing, pressure sensing, optical sensing, and/or the like. Furthermore, the touch sensing means may be based on single point sensing or multipoint sensing. Single point sensing is capable of only distinguishing a single touch, while multipoint sensing is capable of distinguishing multiple touches that occur at the same time.

[0063] The input device 70 may be a touch screen that is positioned over or in front of the display 68. The touch screen 70 may be integrated with the display device 68 or it may be a separate component. The touch screen 70 has several advantages over other input technologies such as touchpads, mice, etc. For one, the touch screen 70 is positioned in front of the display 68 and therefore the user can manipulate the GUI 69 directly. For example, the user can simply place their finger over an object to be controlled. In touch pads, there is no one-to-one relationship such as this. With touchpads, the touchpad is placed away from the display typically in a different plane. For example, the display is typically located in a vertical plane and the touchpad is typically located in a horizontal plane. This makes its use less intuitive, and therefore more difficult when compared to touch screens. In addition to being a touch screen, the input device 70 can be a multipoint input device. Multipoint input devices have advantages over conventional singlepoint devices in that they can distinguish more than one object (finger). Singlepoint devices are simply incapable of distinguishing multiple objects. By way of example, a multipoint touch screen, which can be used herein, is shown and described in greater detail in copending and commonly assigned U.S. patent application Ser. No. 10/840, 862, which is hereby incorporated herein by reference.

[0064] The computer system 50 also includes capabilities for coupling to one or more I/O devices 80. By way of example, the I/O devices 80 may correspond to keyboards, printers, scanners, cameras, speakers, and/or the like. The I/O devices 80 may be integrated with the computer system 50 or they may be separate components (e.g., peripheral devices). In some cases, the I/O devices 80 may be connected to the computer system 50 through wired connections (e.g., cables/ports). In other cases, the I/O devices 80 may be connected to the computer system 80 through wireless connections. By way of example, the data link may correspond to PS/2, USB, IR, RF, Bluetooth or the like.

[0065] In accordance with one embodiment of the present invention, the computer system 50 is designed to recognize gestures 85 applied to the input device 70 and to control aspects of the computer system 50 based on the gestures 85. In some cases, a gesture is defined as a stylized interaction with an input device that is mapped to one or more specific computing operations. The gestures 85 may be made through various hand, and more particularly finger motions. Alternatively or additionally, the gestures may be made with a stylus. In all of these cases, the input device 70 receives the gestures 85 and the processor 56 executes instructions to carry out operations associated with the gestures 85. In addition, the memory block 58 may include a gesture operational program 88, which may be part of the operating system or a separate application. The gestural operation program 88 generally includes a set of instructions that recognizes the occurrence of gestures 85 and informs one or more software agents of the gestures 85 and/or what action(s) to take in response to the gestures 85.

[0066] When a user performs one or more gestures, the input device 70 relays gesture information to the processor 56. Using instructions from memory 58, and more particularly, the gestural operational program 88, the processor 56 interprets the gestures 85 and controls different components of the computer system 50, such as memory 58, a display 68 and I/O devices 80, based on the gestures 85. The gestures 85 may be identified as commands for performing actions in applications stored in the memory 58, modifying GUI objects shown on the display 68, modifying data stored in memory 58, and/or for performing actions in I/O devices 80. By way of example, the commands may be associated with zooming, panning, scrolling, paging, rotating, sizing, and the like. As further examples, the commands may also be associated with launching a particular program, opening a file or document, viewing a menu, making a selection, executing instructions, logging onto the computer system, permitting authorized individuals access to restricted areas of the computer system, loading a user profile associated with a user's preferred arrangement of the computer desktop, and/or the like.

[0067] A wide range of different gestures can be utilized. By way of example, the gestures may be single point or multipoint gestures; static or dynamic gestures; continuous or segmented gestures; and/or the like. Single point gestures are those gestures that are performed with a single contact point, e.g., the gesture is performed with a single touch as for example from a single finger, a palm or a stylus. Multipoint gestures are those gestures that can be performed with multiple points, e.g., the gesture is performed with multiple touches as for example from multiple fingers, fingers and palms, a finger and a stylus, multiple styli and/or any combination thereof. Static gestures are those gestures that do not include motion, and dynamic gestures are those gestures that do include motion. Continuous gestures are those gestures that are performed in a single stroke, and segmented gestures are those gestures that are performed in a sequence of distinct steps or strokes.

[0068] In one embodiment, the computer system 50 is configured to register multiple gestures at the same time, i.e., multiple gestures can be performed simultaneously. By way of example, a zoom gesture may be performed at the same time as a rotate gesture, or a rotate gesture may be performed at the same time as a pan gesture. In one particular implemen-